- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000200000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Coutris, Nicole (2)
-
Fadel, Georges (2)
-
Li, Gang (2)
-
Montalbano, Andrew (1)
-
Sadiwala, Rushabh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work presents a comprehensive methodology for designing meta-materials with desired non-linear elastic behaviors. The approach employs a modified asymptotic expansion based homogenization method for topology optimization with finite deformation. Design and optimization of meta-materials for targeted non-linear elastic response under various loading conditions is explored.more » « less
-
Montalbano, Andrew; Fadel, Georges; Coutris, Nicole; Li, Gang (, ICTAM 2024)Starting from a network of discrete beams, topology optimized structures are produced by simultaneously optimizing each beam’s width and the locations of each node within the network. Due to the sparse nature of a beam network and by utilizing gradient descent results in a drastic reduction in computational cost compared to existing methods. Two different optimization objectives are investigated: minimization of the strain energy occurring from loading, often referred to compliance minimization; and the design of structures with prescribed mechanical responses to an applied load.more » « less
An official website of the United States government

Full Text Available